Выращивание аквариумных растений при повышенных температурах
При содержании рыб ряда видов с явным или мнимым требованием к высокой температуре или перегреве воды в летнюю жару аквариумисты сталкиваются с заметным ухудшением состояния, а зачастую и гибелью водных растений. Приходится делать выбор - теплолюбивые рыбы без растений или рыбы других видов, способные нормально жить при стандартных для тепловодного аквариума температурах. Летние же термические скачки требуют, как считается, экстремальных мер: постоянного охлаждения льдом, установки холодильников или кондиционеров. Правда, можно смириться с сокращением коллекции водной флоры и ухудшением состояния выживших растений, полагая это неизбежным. Но так ли это?
Условно можно считать температуру в аквариуме повышенной, если столбик термометра превышает отметку 28°С. Верхней же рассматриваемой границей примем 35°С. За долгие годы занятия аквариумистикой с более высокими показателями я не встречался (разумеется, без учета откровенно аварийных ситуаций). И хотя напрямую переносить в аквариумную практику принципы существования природных гидробиологических сообществ нельзя, но разве в природных водоемах с растениями в тропиках и субтропиках, да и в средней полосе, более высоких температур не бывает? Уверяю вас, бывают.
Чтобы понять, в чем причина проблем с выращиванием аквариумных растений при высоких, но вполне естественных для природных водоемов температурах, необходимо рассмотреть два вопроса. Первый: чем отличается ситуация в аквариуме от природной, и второй: нельзя ли в физиологии растений найти ключ к решению данной проблемы с помощью доступных нам средств.
Для решения первого вопроса сравним естественный водоем со средним любительским аквариумом. Под средним понимается аквариум 100-200 л, снабженный светильником удельной мощностью от 0,5 до 1,0 Вт на литр воды при высоте водяного столба 40-50 см, оснащенный фильтром и терморегулятором, с грунтом из песка или гравия различных фракций и заселенный рыбами и растениями. На первый взгляд, полный аналог естественно-природной ситуации. Но...
Рассмотрим только немногие наиболее важные параметры внешней среды, влияющие на жизнь водных растений. Комнатный аквариум по сравнению даже с самым маленьким естественным водоемом - просто лужа против моря. А значит, все процессы протекают в малом объеме значительно быстрее и контрастнее. Поскольку характерной чертой тропических вод является их постоянство по физико-химическим показателям, то изменчивость аквариумной среды может считаться неблагоприятным фактором. Поэтому необходимо стремиться к максимально возможной стабильности и уж во всяком случае, не допускать резких изменении и колебаний параметров.
Природные воды, в которых: обитают содержащиеся в аквариумах растения, весьма разнообразны по своим свойствам, но еще больше они отличаются от воды, которой мы заполняем аквариумы.
Не вдаваясь в подробный анализ, можно сказать, что в нашей воде не хватает многих макро- и микроэлементов, особенно калия, железа, магния и марганца, необходимых для растений, но соединения азота и фосфора присутствуют в избытке, что весьма нежелательно. Постараться выровнять эту ситуацию можно регулярной подменой воды (для снижения концентрации вредных веществ) и внесением недостающих элементов после каждой подмены. Аквариумная вода обычно также нуждается в принудительном насыщении кислородом и углекислым газом. К счастью, все необходимое для этого есть в продаже. Весьма негативно сказывается на растениях неподвижность воды, чего не бывает даже в самых маленьких природных водоемах, бороться с этим можно с помощью помп или устройством протоки.
Существенны отличия между природными и аквариумными грунтами. Прежде всего, в природе грунт всегда проточный как в горизонтальном, так и в вертикальном направлении. Проточность грунта насыщает его кислородом, что необходимо для корневого дыхания растений, так как корням не хватает О2, поступающего из надземных частей растения. Кроме того, кислород в грунте необходим для разлагающих органику бактерий и грибов, успешное функционирование которых предотвращает закисание субстрата со всеми вытекающими последствиями. Решить эту проблему можно с помощью обогрева грунта термошнурами или установкой фальшдна с выбросом воды из внешнего фильтра под грунт. В обоих случаях восходящие токи вентилируют грунт и насыщают его кислородом.
Еще одно обстоятельство. Грунты в естественных водоемах богаты питательными веществами, чего нельзя сказать о стандартных химически нейтральных аквариумных грунтах. Спектр имеющихся в продаже грунтовых удобрений позволяет легко справиться с этой проблемой. Особенно стоит отметить появившийся недавно в продаже латерит: именно на латеритных грунтах произрастают в природе многие тропические растения. Латерит беден питательными веществами, но богат железом, которого так не хватает растениям в аквариумах.
Следующим серьезным различием ситуации в аквариуме и природе является недостаточная в большинстве случаев освещенность домашних водоемов. Как решать эту проблему - вполне понятно, но стоит заметить, что желание бессмысленно пытаться исправить ситуацию продлением светового дня может привести только к дальнейшему ухудшению состояния растений. Нормальный световой день в естественных водоемах длится 8-9 часов, этого значения стоит придерживаться и в аквариуме.
Существенным моментом является то, что на глубине 40 см сила света падает более чем в 10 раз даже при кристально чистой воде, лишенной цветности и взвеси. Поэтому аквариумы с живыми растениями глубиной более 50 см должны оборудоваться специальными светильниками, а не люминесцентными трубками.
Последнее, о чем стоит упомянуть, это суточный перепад температур в природных водоемах, который значительно меньше атмосферного, но все-таки заметен. В аквариуме достаточно сложно и хлопотно соблюсти это условие.
Из вышеизложенного следует, что в большинстве случаев в стандартном аквариуме растения пребывают далеко не в лучших условиях. Поэтому надежную прописку в домашних водоемах получила лишь небольшая часть из теоретически пригодных для культивирования водных растений, а именно, та, которая легче приспосабливается к неблагоприятным условиям или изначально приспособлена к условиям среды, сходным с аквариумными.
Теперь обратимся к физиологическим аспектам жизни водных растений и посмотрим, что происходит с гидрофитами при повышении температуры окружающей среды.
Растения относятся к автотрофным организмам, то есть создающим: органические вещества из неорганических, в данном случае - за счет фотосинтеза. При этом энергия солнечного света превращается в химическую, а уже с помощью химической энергии из воды и углекислого газа синтезируются углеводы и выделяется кислород. Кроме углеводов, в процессе фотосинтеза образуется некоторое количество аминокислот и, как следствие, белков. Особенно активно образование аминокислот идет при преобладании лучей синего спектра и избытке азотного питания.
Весь процесс фотосинтеза протекает в хлоропластах благодаря зеленому пигменту хлорофиллу. Химический анализ показал, что в хлоропластах находится 80% железа, 70% цинка, 50% меди от всего содержания этих элементов в листе. В состав хлорофилла обязательно входит и магний. У высших растений известны два типа хлорофилла: a и b. Они способны поглощать свет с разной длиной волны. Так, максимумы поглощения первого из них 429 и 660 нм, второго - 453 и 642 нм. Кроме того, в хлоропластах есть и ряд других пигментов, способных улавливать лучи с другими длинами волн и вовлекать запасенную энергию в фотосинтез с участием хлорофилла.
В процессе фотосинтеза происходит постоянное разрушение и синтез хлорофилла. Исследования показали, что наибольшее накопление его при прочих равных условиях происходит при температуре 26-30°С.
Собственно фотосинтез протекает в две стадии. Первая - накопление энергии, а вторая - собственно синтез органического вещества. Для первой стадии необходим свет, а вторая происходит в темноте.
При увеличении интенсивности света свыше 50% от прямого солнечного интенсивность фотосинтеза не возрастает. Суммарная скорость процесса определяется более медленной стадией, а именно - темновой. Ускорить вторую стадию можно повышением температуры и концентрации углекислого газа, а, следовательно, при увеличении количества света общая интенсивность фотосинтеза возрастает.
Наряду с фотосинтезом в растении протекает противоположный процесс - дыхание, то есть выделение запасенной в органическом веществе энергии, сопровождаемое окислением органических соединений до неорганических. Процесс дыхания протекает и в темноте и на свету. Какие факторы влияют на процесс дыхания? Повышение температуры и содержания кислорода ускоряют, а понижение температуры и повышение содержания углекислого газа, соответственно, замедляют. Заметно усиливает дыхание растений наличие в воде соединений фосфора.
Итак, что же происходит с растениями при температуре воды в аквариуме 28-30°С? Усиливается дыхание, то есть разрушение органических веществ, протекающее постоянно. А вот синтез органического вещества, протекающий в процессе темновой фазы фотосинтеза, может усилиться только при достаточном запасе световой энергии, накопленной при световой фазе.
Следовательно, увеличивается потребность растений в уровне освещенности. А для успешного протекания темновой стадии фотосинтеза необходимы углекислота и ряд микро- и макроэлементов. Но при повышении температуры растворимость газов в воде падает. Значит, необходимо принудительное нагнетание углекислого газа.
Если не усилить процесс синтеза, дыхание начнет превалировать, и этот дисбаланс уже в недалеком будущем неизбежно вызовет истощение растений.
Именно этот путь следует предпочесть, так как реально снизить интенсивность дыхания можно только некоторым снижением ночных температур, а это проблематично в домашних условиях. Необходимо интенсифицировать процесс фотосинтеза, ведущий к накоплению запасов органического вещества, потребляемого в процессе дыхания.
Подводя итог, позволю себе суммировать вышеизложенное в виде простейших рекомендаций.
* Усилить свет, не удлиняя светового дня. В случае необходимости лучше даже затемнять аквариум шторами на то время, когда светильник выключен. В противном случае характерный для наших умеренных широт длинный световой день в сочетании с высокой температурой почти неминуемо вызовет водорослевую вспышку.
* Поставить дозатор углекислого газа.
* Усилить подкормку растений специальными жидкими удобрениями и внести грунтовые удобрения, если растения в них нуждаются.
* По возможности повысить интенсивность подмены воды, это позволит хоть немного понизить температуру и предотвратит возникновение в аквариумной воде избыточных концентраций соединений азота и фосфора, которые инициируют водорослевую вспышку. Следует учесть, что соединения азота и фосфора вредны при их избытке, но в небольшом количестве они необходимы. В густо засаженном растениями аквариуме может даже возникнуть их дефицит, Крайне желательно контролировать параметры воды с помощью тестов.
Конечно, данные рекомендации носят общий характер. К сожалению, невозможно сделать их более конкретными без учета условий аквариума и содержащихся в нем растений. Но наблюдательный аквариумист сможет вовремя заметить неладное и принять необходимые меры.
Автор: Г. Грачев
Источник: Журнал "Аквариум" 2001 г. №6